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Numerical model for granular compaction under vertical tapping

P. Philippe and D. Bideau
GMCM, Bâtiment 11A, Campus de Beaulieu, Universite´ de Rennes I, F-35042 Rennes, France

~Received 27 November 2000; published 20 April 2001!

A simple numerical model is used to simulate the effect of vertical taps on a packing of monodisperse hard
spheres. Our results are in good agreement with an experimental work done in Chicago and with other previous
models, especially concerning the dynamics of the compaction, the influence of the excitation strength on the
compaction efficiency, and some aging effects. The principal asset of the model is that it allows a local analysis
of the packings. Vertical and transverse density profiles are used, as well as size and volume distributions of
the pores. An interesting result concerns the appearance of a vertical gradient in the density profiles during
compaction. Furthermore, the volume distribution of the pores suggests that the smallest pores, ranging in size
between tetrahedral and octahedral sites, are not strongly affected by the tapping process, in contrast to the
largest pores which are more sensitive to the compaction of the packing.
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I. INTRODUCTION

Granular materials constitute the raw materials in a h
number of human activities such as agriculture, the min
industry, and pharmaceuticals, and are at the heart of
matter in several ecological challenges such as avalanch
desertification by eolian erosion. Therefore, explaining a f
current granular processes, such as storage, transport, o
lapse, is a real economical challenge. Furthermore, pack
of spheres, which comprise the simplest model of a gran
medium, have a great fundamental interest for physici
hard sphere systems are indeed a common descriptio
simple liquids@1#; moreover grains can behave, according
the external conditions, more or less like a solid, a liquid,
a gas@2#. This great variety of behaviors for a banal heap
grains makes granular mechanics a rich area of investiga
only partially clarified at the moment. It is now a well-know
result@3–5# ~although there is no theoretical explanation f
it! that a disordered static packing of equal hard spheres
cover a large range of volume fractions, approximately fr
56%, for random loose packing, to 64%, for random clo
packing ~R.C.P.!. For a regular arrangement, the packi
fraction can reach up to 74% which corresponds to the de
est structures, namely the hexagonal compact~H.C.! and the
face-centered-cubic~fcc! crystals.

The thermal energy (kBT) plays no role, because it i
insignificant compared to the gravitational energy of a m
roscopic grain; each packing of spheres is a metastable
figuration which can persist as long as there is no exte
excitation. In this framework, issues of the compaction
grains under vertical taps are a practical way to study
succession of jumps from a metastable equilibrium to
other one. The initial packing is quite loose, and can prog
sively reach a nearly stationary configuration~steady state!
evaluated through its average volume fraction. Some exp
ments done in Chicago@6–8# studied the influence of the
tapping intensity on the steady-state value and the dynam
of the compaction, which is approximately the inverse of
logarithm of the number of taps. The experimental setup
thin tube of diameterD51.88 cm, filled to about an 80-cm
height with monodisperse, spherical soda-lime glass be
~of diameterd51, 2, or 3 mm!. The tube is shaken by a
1063-651X/2001/63~5!/051304~9!/$20.00 63 0513
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electromagnetic exciter delivering vertical taps, each cons
ing of an entire cycle of a sine wave of frequencyf
530 Hz. The excitation strength is parametrized byG, the
ratio between the measured acceleration peak and the g
tational accelerationg. Moreover, several numerical and th
oretical works@9–15#, most of them dealing with notions o
free volume and geometric constraint, found the same k
of behavior as obtained experimentally; some of th
@10,11# pointed out structural aging effects, as typically o
served in glassy systems. Thus a parallel might exist betw
this granular compaction and the dynamics of out-
equilibrium systems like glasses.

In this work, we used a simple model to simulate t
compaction of a packing of monosize spheres submitted
vertical taps. We did not try to make a realistic description
the quite complex succession of collisions in a shaken pa
ing: as the only ingredient of the model we retained a g
metric constraint between hard spheres, which is believe
be the principal origin of the compaction. Despite the fa
that we deliberately omitted the mechanical dimension of
problem, the model is able to reproduce qualitatively t
experimental results of the Chicago group, as well as so
further results in agreement with different numerical and t
oretical studies. As the model seems to capture the physic
the problem, it is then possible to go beyond a global ana
sis. Indeed, as a three-dimensional packing of hard sphe
our description has the quite interesting asset that it is v
close to a real granular medium. Thus, contrary to almost
previous works which dealt only with a macroscopic pro
~i.e., the average density in all or part of the packing!, our
model can provide us with realistic information about t
local structure of a packing and its evolution under comp
tion by taps.

This paper is organized as follows. A detailed descript
of the model is presented in Sec. II. Section III is devoted
a global analysis of compaction~logarithmic dynamics, hys-
teresis effect, and aging behaviors!. In Sec. IV, the local
analysis of the packings is described with the use of den
profiles and size and volume distributions of the pores. O
conclusions and perspectives end the paper in Sec. V.
©2001 The American Physical Society04-1
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II. MODEL

The model proposed here is purely geometric, and d
only with the steric constraint, neither friction nor conta
law between the spheres or with the walls is introduced. T
different sequences of tapping were initialized from a re
tively loose packing obtained by a steepest-descent a
rithm, simulating a sequential gravitational deposition@16#.
We worked with packings of 4096 spheres of radiusR piled
up in a square-box of dimensionL532R. Concerning the
vertical walls, we used both periodic boundary conditio
~P.B.C.’s! and fixed boundary conditions~F.B.C.’s! i.e. im-
passable vertical planes. The top of the box is open, whe
the bottom is a fixed impassable plane.

A tap is decomposed in two stages: first a vertical dilat
and then a gravitational redeposition.

The first stage corresponds to an external excitat
which will enable the packing to move from a metasta
equilibrium to another one. We used the simplest way
simulate the tap by applying a uniform dilation« to the
whole packing@z→z(11«)#. This reduction is certainly far
from a real tap, but we assume that the way of dilating
packing is less important than the result of the dilation
significant increase of the average free volume of the sph
will allow collective rearrangements during the seco
stage—the redeposition of the packing.

This redeposition procedure must be nonsequential in
der to permit such collective behaviors; thus we use a Mo
Carlo algorithm to discretize the motion of the spheres
great number of small displacements is computed. An in
vidual movement procedure is structured as follows:
sphere, randomly chosen, is submitted to a small rand
displacement; if this displacement creates no interpenetra
with another sphere or with the walls~according to the
boundary conditions!, it is accepted; otherwise it is rejecte
Because of this binary schema, two neighboring spheres
not be exactly in contact but, after a sufficient time, th
become very close to contact. Figure 1 shows a typical
placement: the values of the polar anglef and the displace-
mentd are strictly randomly chosen between 0 and 2p and 0
and dmax, respectively, whereas the choice of the angleu
follows a random distribution centered on zero to mimic t
effect of gravity. We use the following Gaussian distributi
of width u0 truncated beyondp/2 in order to orientate all the
displacements down to the bottom of the box:

P~u!5A exp@2~u/u0!2#. ~1!

FIG. 1. A typical displacement during the redeposition stage
the algorithm.
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The choice of the distribution does not seem to be restrict
some attempts with a Poissonian distribution and a lin
distribution gave qualitatively the same phenomenology:
pertinent parameter is the widthu0.

With such an algorithm, agitation will persist indefinitel
So we regularly test the packing during the redeposition p
cess. The variable checked is^Z&, the average altitude of the
packing that is the average potential energy of the sphe
The redeposition is stopped when the relative variation
^Z& becomes smaller than a thresholdh. The choice of̂ Z&
is motivated by its easy evaluation during the process, and
its possible link with a statistical mechanics approach.

This simulation is rather close to the one proposed
Barker and Mehta@17# but with some differences, especial
concerning the way of introducing gravity and the end of t
redeposition stage.

The model uses four parameters:dmax, h, u0, and«. The
first two have a direct effect on the simulation time. T
smaller the value ofh, the longer the simulation time; still,h
must be small enough if we want the redeposition to
nearly completed. The parameterdmax has to be optimized.
A very small value ofdmax allows almost all of the displace
ments to be accepted, but the effect on the redepositio
very slight and the packing is therefore nearly frozen. Co
versely, for a large value ofdmax, almost all the displace-
ments are refused and, once again, the packing evolves
slowly. In this study, we used the intermediate valuedmax
5R/5.

u0 has a significant effect on the packing behavior: a v
small u0 induces a decompaction, whereas a large value
creases the efficiency of the compaction. We foundu0
5p/4 as the optimized value, giving rise to the maxim
compaction rate.

The last parameter« corresponds to the external excit
tion induced in the packing. This is our control paramet
The value of« can be estimated from experimental resu
concerning the dilation of a vertically shaken sand heap@18#:
«5dh/h'5/500'1022. We can also try to link« roughly to
the experimental control parameter, the dimensionless ac
erationG5Av2/g whereA andv are, respectively, the am
plitude and the frequency imposed on the bottom of the he
In a first approximation, if we neglect the loss of energy
the packing, a particle at the top of the heap@z(0)5h# ac-
quires an initial speedvA and achieves a ballistic flight. Its
maximal altitude isz(01)5h1(g/2)(G/v)2, and then

G5vS 2h

g D 1/2

«1/2⇒G}«1/2. ~2!

As «1/2 is linked toG, we will use it as our control paramete
to quantify the strength of the tapping process. With this, i
possible to compare the results of our model with the exp
mental work of the Chicago group and with other numeri
and theoretical models, almost all of them dealing only w
a global description of the granular system.

III. GLOBAL ANALYSIS

This global analysis is achieved with different avera
values. We did not use a direct evaluation of the pack

f
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NUMERICAL MODEL FOR GRANULAR COMPACTION . . . PHYSICAL REVIEW E63 051304
fraction from the number of spheres in a reference volu
because, whether boundary effects are significant or, fo
smaller volume, the statistics become too poor. Moreov
the choice of the reference volume is not unique: it can
for example, the space that contains all the spheres,
smaller space that contains only the centers of the sphe
To avoid being partial, we evaluate the packing fraction
averaging the surface packing fractionF, calculated on
many horizontal cuts. This measure is permissible becaus
the following stereologic result: the average surface fract
of any cut in a packing is equal to the volume fraction of t
packing@19#; with horizontal cuts, this calculus is just a sp
tial integration which gives the exact volume fraction. T
quantity Fb is calculated in this way at the bottom of th
packing between the heights 0 and 4R; ^Fc& comes from a
similar calculation on approximately 90% of the packin
and is corrected near the bottom wall by a perturbated z
model@20#. This model uses a corrective factor for the av
age density of a packing near a wall~between 0 andR) with
regard to a packing not perturbated by any wall. For the c
of spheres near a plane, this factor is estimated to 16/11.
also interesting to studŷZ&, the average potential energy o
the whole system, which is quite pertinent in a statisti
mechanics description.

A. Dynamics of compaction

The densification of the packing is observed through
temporal evolution of the preceding mean values; here
time is the number of taps, and what we call the dynamics
the compaction is, in fact, the succession of metastable e
librium, each jump from one to another being induced by
taps. Figure 2 shows compaction laws obtained with fix
boundaries~F.B.C.’s! and three different excitation rate
This excitation intensity«1/2 has a decided effect on the com
paction dynamics~see Sec. III B!. The simulation curves are
in good agreement with the experimental data and com
ible with the following fit previously proposed@6#,

X~ t !5X`2
DX`

11BX ln~11t/tX!
, ~3!

with X5Fb or ^Fc&. For ^Z&, a nearly similar fit can be
proposed:

^Z&~ t !5^Z&`S 11BZ ln~11t/tZ!

^Z&`

^Z&0
1BZ ln~11t/tZ!D . ~4!

We have noted that a sum of two exponentials can also
^Z&(t) reasonably well.

The dependence of these parameters on« is difficult to
characterize. We simply note that the parameterB is consis-
tent with an exponential dependence on«1/2 ~i.e., G).

This compaction dynamics is quite particular: as the pa
ing progressively densifies, the compaction efficiency
creases. Thus the dynamics reduces its speed, and the s
evolves to a steady state without ever really reaching
state. This slowing down is particularly remarkable for t
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smallest values of«1/2. This specific dynamics requires th
study of the densification on a logarithmic time scale.

It is also interesting to analyze the fluctuations of t
curves, especially when the packing becomes close to
asymptotic or steady-state limit. The power spectrum of
fluctuationsX2XSS as a function of the frequency, i.e., th
inverse of the tap number, shows more or less a sim
power law in a log-log diagram~with a slope in the range
1–1.5!. The effect of« is noticable only for the high fre-
quencies. Moreover, the simple standard deviation of
fluctuations,sX5A^(X2XSS)

2&, seems to be directly pro
portional to«1/2 or G. These results, calculated forX5^Z&,
are presented in Fig. 3. Furthermore, we have noted tha
periodic boundary conditions do not qualitatively affect the
observations; the same remark can be made concerning
results of Sec. III B.

B. Hysteresis on the steady-state values

The next stage consists of studying the influence of
excitation parameter«1/2 on the maximal value of the pack
ing fraction. For this purpose, we carried out a succession
simulations with a sequence of 4000 taps. The steady-s
value is estimated by averaging the packing fraction on
1000 last taps, or directly through the last value. The sma

FIG. 2. Bottom packing fractionFb vs t, the number of taps, on
logarithmic ~up! and linear~down! time scales for three excitation
rates («5531023, 531022, and 1.531021). The solid lines are
the simulation results, and the dotted lines are the inve
logarithmic fits.
4-3
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P. PHILIPPE AND D. BIDEAU PHYSICAL REVIEW E63 051304
«1/2 is, the larger the difference between this steady-s
value and the asymptotic valueX` given by the fit. More-
over, in this small excitations range,X` can overcome the
R.C.P. limit, andt, the characteristic time of the fit, in
creases spectacularly. In fact, the fit becomes more and m
uncertain in so far as the triplet (X` , B, t) is no longer
unique, and depends strongly on the range of taps over w
the data fitting is performed. This deviation between
steady-state value and an uncertain asymptotic limit was
noted in the experimental work of the Chicago group@8# and
in some theoretical studies@13,15#. The dependence of^Fc&
on «1/2 is shown in Fig. 4~solid black squares!. The different
packings are obtained after 4000 taps of strength«, starting
from the same initial packing. The curve has a bell sha
with a maximum between 0.1 and 0.2.

If we now compute a unique tapping sequence with
progressive increase of the excitation«1/2 after every 4000
taps ~the constant excitation increment isD«1/2510.025),
we obtain nearly the same curve for^Fc&, as can be seen in
Fig. 4 ~open circles!. When carrying out the same process
the opposite way, i.e., with a progressive decrease of«1/2

(D«1/2520.025), two things can happen.
If, while increasing,«1/2 goes beyond a critical value o

(«1/2)* '0.15, the final packing fraction̂Fc& does not de-
crease but increases a bit more to a maximum value. If
compute another increase process (D«1/2510.025), we

FIG. 3. The power spectrum of the fluctuations of^Z& vs fre-
quency ~the inverse of the number of taps! ~up! and the simple
standard deviation of̂Z&, s^Z& , which is nearly linear with«1/2

~down!.
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cover approximately the same values. This last upper bra
including the part above («1/2)* is represented in Fig. 4~up
and down open triangles!. As it is relatively well reproduc-
ible, it is called ‘‘reversible.’’ We can also see on this r
versible branch that̂Fc& decreases with«1/2.

Conversely, if«1/2 remains below («1/2)* during the in-
crease stage, the steady-state values do not evolve sig
cantly; they are nearly frozen, and it is hard to estim
whether there is a compaction or a decompaction proc
because the dynamics is very slow. This last branch is ca
‘‘irreversible’’ and reflects the great metastability of the co
responding packings.

To summarize, there is a strong hysteresis effect wh
allows the maximum compaction rate to be reached by
«1/2 increase-decrease sequence. These observations a
very good agreement with the results of Nowaket al. @7#. In
particular, Fig. 4 is to be compared to the experimental d
obtained with 1-mm-diameter beads, corresponding to an
pect ratio of nearly 19, close to that used in our simulat
(L/2R516). Surprisingly, for an aspect ratio of 9, the e
perimental results show a much larger increase of the pa
ing fraction on the reversible branch, up to nearly 66%~i.e.,
more than the R.C.P. limit, which may indicate a comme
surability between the cylinder and the beads@7#!. However,
for a still smaller aspect ratio of 6, the reversible branch
more similar to the first case, with a moderate increase
maximal value below the 64% limit.

C. Aging

In these kinds of systems, in slow evolution to a fin
equilibrium, it is possible to demonstrate aging effects
comparing the system at different ages. This comparison
be made by use of temporal correlation functions of glo
values (r,^Z&, . . . ) between the initial packing and th
same packing after an evolution timetW ~waiting time!. In
this study we work with the following function:

A~ t,tW!5@^Z&~ tW!2^Z&~ t1tW!#2. ~5!

Herex̄ indicates the statistical average ofx; that is, the mean

FIG. 4. Steady-state values of^Fc& obtained after 4000 taps
with different values of«1/2 ~solid black squares! and hysteresis
during a sequence of increase~open circles!, decrease~open up
triangles! and increase~open down triangles! of the excitation with
an incrementD«1/2 every 4000 taps.
4-4
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NUMERICAL MODEL FOR GRANULAR COMPACTION . . . PHYSICAL REVIEW E63 051304
value calculated for a certain number of realizations of
same experiment. The results have been averaged on
ten realizations because of the limitation due to the calc
tion time. The statistics are, therefore, rather poor; tha
why we use solelŷ Z&, which fluctuates quite less than th
other global values. In Fig. 5 we draw the curves ofA(t,tW)
obtained for different values oftW . There is obviously a
scaling law; a fit similar to that in Sec. III A, with the thre
parametersA` ~the asymptotic limit!, BA , andtA , is quite
compatible with the data:

A~ t,tW!5A`S 12
1

11BA ln~11t/tA! D . ~6!

The same kind of aging effects were already pointed ou
previous numerical studies@10,11#. These effects confirm the
great similarity between granular compaction, or more g
erally slow granular rheology and glassy systems submi
to time-dependent driving forces~see, for instance, Refs
@21–23#!.

To conclude with a global analysis of the compaction, i
satisfying to note that our simulation reproduces qualitativ
well the previous results obtained both experimentally a
theoretically. This model seems to capture most of the ph

FIG. 5. Aging effects on the time-correlation functionA(t,tW)
for several waiting timestW : the different curves~up!, and a col-
lapse according to the fit of the dotted line~down!.
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ics of the problem. Because it gives a very realistic desc
tion of a granular system such as a three-dimensional p
ing of hard spheres, it can be a quite useful and interes
tool to go beyond a global description to a local analysis
the packing’s structure during the compaction process.

IV. LOCAL ANALYSIS

To study the packings of more or less compacted sph
locally, we use two kinds of descriptions: packing fractio
~or density! profiles are calculated vertically and transverse
to the box, and size and volume distributions of the pores
a packing are evaluated and then analyzed.

A. Density profiles

Using the surface packing fraction calculated by ster
logical cuts~as in the evaluation ofFb and^Fc&), we have
access to vertical~horizontal cuts! and transverse~vertical
cuts! density profiles. Some examples of vertical profiles a
shown in Fig. 6. These have been obtained with F.B.C.’s,
the use of P.B.C.’s induces no significant differences. T
profiles are characterized, in particular, by a negative vert
gradienta and by large peaks near the bottom of the bo
These peaks reflect a partially ordered packing due to
wall, and are very close to previous experimental obser
tions @24#. The gradient can be roughly estimated in an
termediate zone (5<z/R<22 for F.B.C.’s and 5<z/R<26
for P.B.C.’s! after smoothing the profile. This gradient, d
rectly linked to «, is qualitatively different from previous
numerical results@11#, where a local densification was ob
tained at the interface. It could be objected that this grad
comes directly from a modeling of the tap through a unifo
dilation. Nevertheless, despite the fact thata is difficult to
estimate very precisely, it does not seem to be monoto
with «1/2, but has more or less the same kind of bell-shap
dependence as the other steady-state values. This beh
cannot be caused only by the dilation. However, in contr
to the other average values, it seems thata presents no hys-
teresis effect which denotes a relatively different behavior
conclusion, the origin of the anisotropy of the packing, o

FIG. 6. Two examples of vertical density profiles with their fi
for the initial packing~dotted line!, and for a packing obtained afte
4000 taps with«51021 ~solid line!.
4-5
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P. PHILIPPE AND D. BIDEAU PHYSICAL REVIEW E63 051304
served through this gradienta, is not well understood. It may
come from both the uniform dilation of the system a
its specific redeposition under the simulated particle mot
under gravity. Inspired by a Fermi level profile@25#, we can
propose the following average fit for a typical vertic
profile:

F~ z̄!5
F02a z̄

11exp@b~ z̄2 z̄* !#
where z̄5z/R. ~7!

Figure 7 presents a few transverse profiles in fixed bou
aries; they are qualitatively close to experimental profi
@26#. Here again, some peaks indicate a local organizatio
layers due to the walls; this effect has approximately a thr
layer range. The average lateral density increase~at a dis-
tance less than 7R from the walls, corresponding roughly t
this wall effects range! is noted asdF lateral , and the central
increase asdFcentral . The last one is systematically small
than the other. Both of these are calculated in compari
with the initial profiles, and reflect the spatial repartition
the bulk compaction. These profiles, with periodic boun
aries, reveal no peak, due to the absence of walls. The ce
zone is a bit larger, but retains the same qualitative sh
and densifies during a tapping sequence. This observatio
an obvious compaction even in P.B.C.’s ensures that c
paction is not, or at least is not principally, due to wall e
fects. This was not evident when considering the small
pect ratio used in the experience of the Chicago gro
Quantitatively, the absolute value of the packing fraction
larger in periodic conditions, but its increase due to comp
tion is a bit smaller.

As global values,dF lateral anddFcentral have the same
dependence on«1/2 ~bell shaped curves! as the others. It is
also possible to study their evolution with the number
taps. The results, presented in Fig. 8, point out, once ag
the nearly frozen dynamics for small values of«1/2.

Moreover, we can remark that the initial packing
F.B.C.’s presents a great metastability. This is particula
noticeable on the transverse profile~see Fig. 7!, with an ‘‘un-

FIG. 7. Two examples of transverse density profiles: for
initial packing ~dotted line!, and for a packing obtained after 400
taps with«51021 ~solid line!. The two vertical dotted lines indi-
cate the frontiers in the calculus ofdF lateral anddFcentral .
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derpopulation’’ of the spheres near the walls. This expla
the significant compaction ofdF lateral caused by the first tap
~see Fig. 8!. This metastability is due to the construction
the initial packing: it was built by a gravitational algorithm
@16# with periodic conditions, and a slight agitation was th
induced in the packing to adapt it to fixed boundary con
tions. This last stage was not sufficiently efficient.

B. Size and volume distributions of the pores

Another way to analyze the packing of particles is
study the interstitial voids. This void space is more difficu
to apprehend because, in contrast to a particle, a cavity
no geometric limit. We then introduce the notion of pore a
‘‘void’’ between four neighboring spheres. Previous stud
were already made on this issue, both theoretically and
perimentally. Gotohet al. @27# introduced the pore size dis
tribution P0 as the probability for a randomly positione
sphere of radiusr 8 to intercept no particle center. He pro
posed a theoretical expression forP0 derived from the
Percus-Yevick approximation which agrees well with pre
ous results on random close packings@28,29#,

0<s<1, P0~s!512Fs3, ~8!

e

FIG. 8. Lateral~up! and central~down! packing fraction in-
creases~in comparison with the initial packing! vs t, the number of
taps for four values of«.
4-6
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1<s, P0~s!5~12F!expF F

~12F!2
@2~122F!s3

19/2Fs21125/2F#G , ~9!

where s is the ratio r 8/R (R is the radius of the hard
spheres!, and F is the average volume fraction. Figure
confronts this expression with a distribution calculated
one of the packings obtained after a compaction sequenc
4000 taps (F560.6%), and with periodic boundaries. Th
distribution calculated in the initial packing (F558.4%) is
also represented, and is quite close to the other. This s
difference means that the distributionP0 is insufficiently
sensitive to small structural changes such as compaction

Hence we find that it is more efficient to work with
direct statistical analysis on the size of the pores. To do t
we use the Voronoı¨ tessellation of a packing@30#: a Voronoı¨
polyhedon around a sphere is the region of space in which
the points are closer to this given sphere than to any ot
Two neighbors correspond to two Voronoı¨ polyhedra that
share a face. Each vertex is equidistant from the cente
four neighboring spheres, and therefore constitutes a p
More precisely, we define the pore as a virtual sphere
contact with these four neighboring spheres, which interp
etrates none of them. The size of the pore is then the ra
of this ‘‘void sphere.’’ The volume of this sphere partial
reflects the total void volume situated inside the tetrahed
formed by the centers of the four neighboring spheres. I
packing, it is possible to calculate the size distribution of
poresrj(j), wherej5r /R, with r the radius of a pore andR
the radius of the hard spheres. The normalization gi
*rj(j)dj5NP , the total number of pores in the measur
ment volume. This distribution is linked to the previous on
Thus P0(s5r 8/R) is more or less the sum of the pores
size greater thanr 8. ThereforeP0 is a cumulative distribu-
tion in comparison withrj , which is expected to be mor
sensitive to the local structure. A rather similar analysis

FIG. 9. Theorical pore size distributionP0 ~thick solid line!
compared with the numerical calculation for a packing with t
same average volume fraction~open circles!. There is no significant
difference from the calculations for the initial packing~thin solid
line!, which has a volume fraction this is quite a bit smaller.
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use of the size distribution of the pores was previou
sketched out by Barker and Mehta@17#.

If we now use directly the normalized volumev5j3

54/3pr 3/4/3pR3 as a new variable, the corresponding s
tistical density isrv(v)5(j/3)rj(j) ~here the ‘‘volume’’ of
a pore is reduced to 4/3pr 3). The distributionvrv(v) re-
flects the contribution of the pores to the total porosity a
cording to their size; this last distribution seems to be m
pertinent in problems of free volume and compaction. W
have noted that, by integratingvrv(v), a new global value is
obtained that corresponds to the average normalized vol
of a spherical pore:n5(1/NP)*vrv(v)dv5^v&/V, where
^v& is the average volume of a pore,V is the volume of the
hard spheres, andNP is the number of pores. The averag
pore volumen has the same dynamics and the same kind
reversible-irreversible behavior as described in Sec. III
Figure 10~a! shows the distributionsvrv(v) for a given

FIG. 10. ~a! Volume distribution of the poresvrv(v) for a pack-
ing at different stages of its compaction~F.B.C.’s and «52
31022): t1151, 100, and 10 000. As the packing progressive
densifies~i.e., ast increases!, the tail of the distribution correspond
ing to the largest pores tends to vanish~as symbolized by the ar
row!. HereT andO indicate thev values for tetrahedral and octa
hedral sites in a dense packing~fcc or H.C.’s!. ~b! Plot of ln„rv(v)…
vs v for the same packings. The different tails are compatible w
a Poisson law.
4-7
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packing at different stages of its compaction~in F.B.C.’s and
with an excitation strength«5231022). The statistics are
calculated in a smaller box of height 18R located at a dis-
tance 2R from the walls to avoid some boundary problem
In this measurement volume,NP varies approximately from
9550 to 10250 for the different packings analyzed. Th
different volume distributionsvrv(v) are slightly affected
by the taps in the small pore domain, whereas the varia
of the packing fraction clearly appears in the progress
reduction of the tail of the distribution in the large pore zon
Thus, there is more or less a persistence of the distribu
for values ofv approximately limited by the volume of a
octohedral site (jO5A221'0.414 andvO'0.0711). The
distribution vrv(v) is bell shaped, with an overpopulatio
for the largest pores~the tail! and with a minimum size of the
pores corresponding to a tetrahedral site (jT5A3/221
'0.225 andvT'0.0114). With respect to the small pore
this is in contradiction with a Poisson distribution propos
in a previous theoretical model for logarithmic dynami
@31#. But, in Fig. 10~b!, we note that, in a range of volum
corresponding to the tail of the distribution,rv(v) is com-
patible with a Poisson lawrv(v)}e(2v/v0), wherev0 is di-
rectly linked to n, the average normalized volume alrea
defined, or tô Fc&, the average packing fraction.

These results must be compared with previous work
the issue. First, Bernal@1# analyzed the arrangements
spheres by characterizing the cavities between the sph
To do this, he studied the different polyhedra formed by
sphere centers as corner. He found five canonical ho
Table I @32# presents his results obtained on a mechan
model of hard spheres and concerning the statistical we
~in number and in volume! and thej value corresponding to
each hole. In fact, these canonical holes are more or
distorted @otherwiserj(j) would be an addition of Dirac
peaks#, and thej value corresponding to the regular hole
therefore a lower limit. Thus we can note that the tetrahed
and the tetragonal dodecahedron correspond to the sma
values ofj, for which we have shown that the volume di
tribution vrv(v) is not greatly affected by the tapping pro
cess. In contrast, the octahedron, the trigonal prism, and
archimedian antiprism~the two last in very low proportions!
appear in the large pore range, and are consequently m
sensitive to the compaction state of the packing. Thus,
cording to Bernal’s classification on the structure of t

TABLE I. Characteristics of the Bernal canonical holes.

j5r /R Number~%! Volume ~%!

tetrahedron 0.225 73.0 48.4
half-octahedron 0.414 20.3 26.9
trigonal prism 0.528 3.2 7.8
tetragonal dodecahedron 0.353 3.1 14.8
archimedian antiprism 0.645 0.4 2.1
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pores, we can suggest that compaction is principally due
rearrangements of the three largest canonical pores.

V. CONCLUSIONS AND PERSPECTIVES

A simple model of hard spheres under vertical taps, ba
solely on geometric constraints is sufficient to describe p
vious experimental and numerical results qualitatively:
same kind of compaction dynamics, the same hysteresis
fect on the steady-state values, and the same aging beha
The originality of this model, i.e., a realistic description of
granular system as a three-dimensional packing of h
spheres, permits a structural analysis of the packings
semilocal study of density profiles suggests the existence
negative vertical gradient in the packings but with no cle
hysteresis effect. It also confirms a compaction in the b
which cannot be caused only by wall effects, which are p
ticularly noticeable with fixed boundaries~F.B.C.’s!. A more
local analysis on the void space of the packings shows,
model of spherical pores, a volume distribution sensitive
the packing fraction for the large pores, that is nearly stati
ary for the small ones. Compaction could then be principa
explained by collective rearrangements of the largest po

To further this numerical work, an experimental study
the compaction induced by vertical taps is being carried o
The packing fraction is deduced from a measure of abso
tion of a horizontalg-ray beam. In addition to the averag
volume fraction in the bulk, our setup permits an evaluat
of the vertical density profile in the packing; these measu
ments would be crucial in order to test the results of o
numerical model, especially concerning the existence o
negative vertical gradient. Furthermore, compaction is st
ied in quite different experimental conditions than in the p
vious work of the Chicago group. In this later condition th
setup is a tube of height 80 cm, with an approximate dia
eter of 2 cm filled with 1-mm-diameter soda lime gla
beads. Thus, transverse wall effects are very significant,
the vertical pressure on the packing is saturated for alm
the entire height of the heap, the overload being comple
held up by the walls. Conversely, the cylinder used in o
setup has a diameter of 10 cm and a height of 15 cm; ab
80% of it is filled with 1-mm-diameter glass beads. Here t
wall effects become negligible and the vertical pressure
definitely not saturated in the packing. It will be interestin
to see to what extent these differences can qualitatively
quantitatively affect the compaction under vertical tappin
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