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Numerical model for granular compaction under vertical tapping

P. Philippe and D. Bideau
GMCM, Bdiment 11A, Campus de Beaulieu, Universite Rennes |, F-35042 Rennes, France
(Received 27 November 2000; published 20 April 2001

A simple numerical model is used to simulate the effect of vertical taps on a packing of monodisperse hard
spheres. Our results are in good agreement with an experimental work done in Chicago and with other previous
models, especially concerning the dynamics of the compaction, the influence of the excitation strength on the
compaction efficiency, and some aging effects. The principal asset of the model is that it allows a local analysis
of the packings. Vertical and transverse density profiles are used, as well as size and volume distributions of
the pores. An interesting result concerns the appearance of a vertical gradient in the density profiles during
compaction. Furthermore, the volume distribution of the pores suggests that the smallest pores, ranging in size
between tetrahedral and octahedral sites, are not strongly affected by the tapping process, in contrast to the
largest pores which are more sensitive to the compaction of the packing.
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[. INTRODUCTION electromagnetic exciter delivering vertical taps, each consist-

Granular materials constitute the raw materials in a hugéng of an entire cycle of a sine wave of frequenty
number of human activities such as agriculture, the mining=30 Hz. The excitation strength is parametrizedIbythe
industry, and pharmaceuticals, and are at the heart of theatio between the measured acceleration peak and the gravi-
matter in several ecological challenges such as avalanches wtional acceleratiog. Moreover, several numerical and the-
desertification by eolian erosion. Therefore, explaining a feworetical works[9—15|, most of them dealing with notions of
current granular processes, such as storage, transport, or cfee volume and geometric constraint, found the same kind
lapse, is a real economical challenge. Furthermore, packingsf behavior as obtained experimentally; some of them
of spheres, which comprise the simplest model of a granulgri0,11] pointed out structural aging effects, as typically ob-
medium, have a great fundamental interest for physicistsseryed in glassy systems. Thus a parallel might exist between

hard sphere systems are indeed a common description gfig granular compaction and the dynamics of out-of-
simple liquids[1]; moreover grains can behave, according toequilibrium systems like glasses.

the external conditions, more or less like a solid, a liquid, or In this work, we used a simple model to simulate the

a gas{2]. This great variety of behaviors for a banal heap Ofcompaction of a packing of monosize spheres submitted to

grains makes grar.‘UIar mechanics a ”Ch area of Investigation, e taps. We did not try to make a realistic description of
only partially clarified at the moment. It is now a well-known

result[3-5] (although there is no theoretical explanation forfthe.qwte comple.x succession of collisions in a sl_waken pack-
Ro: as the only ingredient of the model we retained a geo-

it) that a disordered static packing of equal hard spheres ¢ . . o .
cover a large range of volume fractions, approximately fro etric constralnt bgtyveen hard sphereg, which IS believed to
56%, for random loose packing, to 64%, for random clos e the pr|n_C|paI origin pf the compacthn. D_esplte_the fact
packing (R.C.P). For a regular arrangement, the packingthat we deliberately omitted the mechanical dimension of the
fraction can reach up to 74% which corresponds to the dendroblem, the model is able to reproduce qualitatively the
est structures, namely the hexagonal compeoE.) and the experimental results of the Chicago group, as well as some
face-centered-cubitfcc) crystals. further results in agreement with different numerical and the-
The thermal energykgT) plays no role, because it is oretical studies. As the model seems to capture the physics of
insignificant compared to the gravitational energy of a macthe problem, it is then possible to go beyond a global analy-
roscopic grain; each packing of spheres is a metastable cosis. Indeed, as a three-dimensional packing of hard spheres,
figuration which can persist as long as there is no externabur description has the quite interesting asset that it is very
excitation. In this framework, issues of the compaction ofclose to a real granular medium. Thus, contrary to almost all
grains under vertical taps are a practical way to study therevious works which dealt only with a macroscopic probe
succession of jumps from a metastable equilibrium to an{i.e., the average density in all or part of the packimmur
other one. The initial packing is quite loose, and can progresmodel can provide us with realistic information about the
sively reach a nearly stationary configurati(steady state  local structure of a packing and its evolution under compac-
evaluated through its average volume fraction. Some expertion by taps.
ments done in Chicagf6—8] studied the influence of the This paper is organized as follows. A detailed description
tapping intensity on the steady-state value and the dynamiasf the model is presented in Sec. Il. Section Ill is devoted to
of the compaction, which is approximately the inverse of thea global analysis of compactidiogarithmic dynamics, hys-
logarithm of the number of taps. The experimental setup is geresis effect, and aging behaviprén Sec. 1V, the local
thin tube of diameteD =1.88 cm, filled to about an 80-cm analysis of the packings is described with the use of density
height with monodisperse, spherical soda-lime glass beadwofiles and size and volume distributions of the pores. Our
(of diameterd=1, 2, or 3 mm. The tube is shaken by an conclusions and perspectives end the paper in Sec. V.
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The choice of the distribution does not seem to be restrictive:
some attempts with a Poissonian distribution and a linear
distribution gave qualitatively the same phenomenology: the
pertinent parameter is the width,.

With such an algorithm, agitation will persist indefinitely.
So we regularly test the packing during the redeposition pro-
cess. The variable checked(i8), the average altitude of the
packing that is the average potential energy of the spheres.
The redeposition is stopped when the relative variation of

FIG. 1. A typical displacement during the redeposition stage of Z) becomes smaller than a threshajd The choice of Z)
the algorithm. is motivated by its easy evaluation during the process, and by

its possible link with a statistical mechanics approach.
Il. MODEL This simulation is rather close to the one proposed by
Barker and Meht&17] but with some differences, especially

The model proposed here is purely geometric, and dealsyncerning the way of introducing gravity and the end of the
only with the steric constraint, neither friction nor contact redeposition stage.

law between the spheres or with the walls is introduced. The  The model uses four parametets;,, 7, 6, ands. The
ax: il il .

different sequences of tapping were initialized from a rela<irst two have a direct effect on the simulation time. The
tively loose packing obtained by a steepest-descent algQsmgier the value of;, the longer the simulation time; stiti
rithm, simulating a sequential gravitational depositfd®]. |, st be small enough if we want the redeposition to be
We worked with packings of 4096 spheres of radiupiled nearly completed. The paramet. has to be optimized.

up in a square-box of dimensidn=32R. Concerning the  » \,ery small value ofd,,,, allows almost all of the displace-
vertical walls, we used both periodic boundary conditionsyents 1o be accepted, but the effect on the redeposition is
(P.B.C.'9 and fixed boundary condition.B.C.'9 i.e. im- o1y gjight and the packing is therefore nearly frozen. Con-
passable vertical planes. The top of the box is open, Where%rsely, for a large value od,,,,, almost all the displace-

theAbotto_mdls a fixed lrgpassable plan.ef._ el dilationMENts are refused and, once again, the packing evolves very
tap Is decomposed in two stages: first a vertica Iat'onslowly. In this study, we used the intermediate vatlg,
and then a gravitational redeposition. —R/5

The f_|rst stage corresppnds to an external excitation, 0, has a significant effect on the packing behavior: a very
which will enable the packing to move from a metastable

T . small 6, induces a decompaction, whereas a large value de-
equilibrium to another one. We used the simplest way to 0 P 9

simulate the tap by applying a uniform dilation to the creases the efficiency of the compaction. We foufid

. . S ) =1/4 as the optimized value, giving rise to the maximal
whole packing z—z(1+¢)]. This reduction is certainly far compaction rate.

from a real tap, but we assume that the way of dilating the The last parametes corresponds to the external excita-

packing is less important than the result of the dilation: &jon induced in the packing. This is our control parameter.

significant increase of the average free volume of the spherelsne value ofe can be estimated from experimental results

g!llg:”c’t\ge ?ggz(;%\g?uorﬁirfr?ﬁgirggﬂfg during the Secondconcerning the dilation of a vertically shaken sand hedagh
- > : . g=6h/h~5/500~10" 2. We can also try to link roughly to
de:-tr(l)l Sp;erdm?fgjghozoﬂ?cﬁguéeer:g ?/?;rggtr?ggs\;\?gﬂiztgll\;lr(l)r?tghe experimental control parameter, the dimensionless accel-
; ; _ A2 i _
Carlo algorithm to discretize the motion of the spheres: aer.atlonl“ Aw"/g whereA .andw are, respectively, the am
great number of small displacements is computed. An indi-p“tUd.e and the frequ_ency imposed on the bottom of the hegp.

X In a first approximation, if we neglect the loss of energy in

vidual movement procedure is structured as follows: : : _
sphere, randomly chosen, is submitted to a small rando{;‘tnhe packing, a particle at the top of the hdag0)=h] ac-

displacement; if this displacement creates no interpenetratio(illu'reS an |n_|t|aI s_peediA_and achieves azballlsuc flight. Its
with another sphere or with the wall@ccording to the maximal altitude is2(0™) =h+(g/2) (I )", and then
boundary conditions it is accepted; otherwise it is rejected. 2h\ 12

Because of this binary schema, two neighboring spheres can- r= w(—) el og!? 2
not be exactly in contact but, after a sufficient time, they 9

become very close to contact. Figure 1 shows a typical disAs ¢? s linked toI", we will use it as our control parameter
placement: the values of the polar angleand the displace- to quantify the strength of the tapping process. With this, it is
mentd are strictly randomly chosen between O and@1nd O possible to compare the results of our model with the experi-
and dnax, respectively, whereas the choice of the angle mental work of the Chicago group and with other numerical
follows a random distribution centered on zero to mimic theand theoretical models, almost all of them dealing only with
effect of gravity. We use the following Gaussian distribution a global description of the granular system.

of width 6, truncated beyonér/2 in order to orientate all the

displacements down to the bottom of the box: . GLOBAL ANALYSIS

T
:
!
:
:
:
!
t

YA

This global analysis is achieved with different average
P(0)=Aexd —(60/6)?]. (1)  values. We did not use a direct evaluation of the packing
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fraction from the number of spheres in a reference volume 62r
because, whether boundary effects are significant or, for ¢
smaller volume, the statistics become too poor. Moreover,

the choice of the reference volume is not unique: it can be,

for example, the space that contains all the spheres, or i
smaller space that contains only the centers of the sphere: @,
To avoid being partial, we evaluate the packing fraction by (%)
averaging the surface packing fractich, calculated on

many horizontal cuts. This measure is permissible because ¢

the following stereologic result: the average surface fraction

of any cut in a packing is equal to the volume fraction of the
packing[19]; with horizontal cuts, this calculus is just a spa- 1 10 100 1000 10000
tial integration which gives the exact volume fraction. The t+1

quantity &, is calculated in this way at the bottom of the
packing between the heights 0 an&;4®°) comes from a
similar calculation on approximately 90% of the packing,
and is corrected near the bottom wall by a perturbated zone
model[20]. This model uses a corrective factor for the aver-
age density of a packing near a wéletween 0 and) with
regard to a packing not perturbated by any wall. For the case¢®,
of spheres near a plane, this factor is estimated to 16/11. It i{%)
also interesting to stud¢Z), the average potential energy of

the whole system, which is quite pertinent in a statistical
mechanics description.

e=5x 10°
e=5x10°

e=1.5x 10"

(a)

£=5x 107
e=5x 10°
MW e=1.5x 10"

. . 57 1 1 1 1
A. Dynamics of compaction 0 1000 2000 3000 4000

t+1

The densification of the packing is observed through the(b)
temporal evolution of the preceding mean values; here the
time is the number of taps, and what we call the dynamics of FIG. 2. Bottom packing fractio,, vst, the number of taps, on
the compaction is, in fact, the succession of metastable equiegarithmic (up) and linear(down) time scales for three excitation
librium, each jump from one to another being induced by theates £§=5x10"3, 5x10 2, and 1.5<10"1). The solid lines are
taps. Figure 2 shows compaction laws obtained with fixedhe simulation results, and the dotted lines are the inverse-
boundaries(F.B.C.’9 and three different excitation rates. logarithmic fits.

This excitation intensity /2 has a decided effect on the com-
paction dynamicg¢see Sec. Il B. The simulation curves are Smallest values o2 This specific dynamics requires the
in good agreement with the experimental data and compastudy of the densification on a logarithmic time scale.

ible with the following fit previously proposeib], It is also interesting to analyze the fluctuations of the
curves, especially when the packing becomes close to its

B AX., asymptotic or steady-state limit. The power spectrum of the

x(t)_x‘ﬁ_1+ By In(1+t/7y)’ 3 fluctuationsX—Xgg as a function of the frequency, i.e., the

inverse of the tap number, shows more or less a simple
with X=®, or (®°). For (Z), a nearly similar fit can be Ppower law in a log-log diagraniwith a slope in the range
proposed: 1-1.5. The effect ofe is noticable only for the high fre-
quencies. Moreover, the simple standard deviation of the
1+BzIn(1+t/7) fluctuations, oy = ((X—Xs9?), seems to be directly pro-
(D()=(2)- 7a) : (4 portional tos¥ or I'. These results, calculated fé=(Z),
ﬁjL By In(1+t/7y) are presented in Fig. 3. Furthermore, we have noted that the
0 periodic boundary conditions do not qualitatively affect these
bservations; the same remark can be made concerning the
esults of Sec. Il B.

We have noted that a sum of two exponentials can also fi
(Z)(t) reasonably well.

The dependence of these parametersadr difficult to
characterize. We simply note that the param&és consis-
tent with an exponential dependence ©f? (i.e.,T'). The next stage consists of studying the influence of the

This compaction dynamics is quite particular: as the packexcitation parametes/? on the maximal value of the pack-
ing progressively densifies, the compaction efficiency deing fraction. For this purpose, we carried out a succession of
creases. Thus the dynamics reduces its speed, and the systsimulations with a sequence of 4000 taps. The steady-state
evolves to a steady state without ever really reaching th&alue is estimated by averaging the packing fraction on the
state. This slowing down is particularly remarkable for the1000 last taps, or directly through the last value. The smaller

B. Hysteresis on the steady-state values
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10° T — T T — T T —— 61.0 —8a&— direct compaction
—o—Ae"®= +0.025
b A= - 0.025

60.5
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59.0
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10° 10°* 10" 10°
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Frequency (Hz) 0.00 0.05 0.10 0.15 0.20 0.25

(a)

0.010 1 FIG. 4. Steady-state values ¢f°) obtained after 4000 taps
o with different values ofe¥? (solid black squarésand hysteresis
- during a sequence of increasepen circleg decreasgopen up
,.o"'" triangles and increaséopen down trianglesof the excitation with
i an increment\ &2 every 4000 taps.

0.008 4

0.006 +
1 el cover approximately the same values. This last upper branch,
0.004 - 0 including the part aboves’d)* is represented in Fig. dip
o and down open triangl@sAs it is relatively well reproduc-
5,002 el ible, it is called “reversible.” We can also see on this re-
O versible branch that®®) decreases witla /2.
Conversely, ifs¥? remains below £2* during the in-
°'°°°0;, ) o " o2 e 03 " o4 crease stage, the steady-state values do not evolve signifi-
€ cantly; they are nearly frozen, and it is hard to estimate
(b) whether there is a compaction or a decompaction process,
because the dynamics is very slow. This last branch is called
“irreversible” and reflects the great metastability of the cor-
responding packings.

To summarize, there is a strong hysteresis effect which
allows the maximum compaction rate to be reached by an
e is, the larger the difference between this steady-statéllz increase-decrease sequence. These observations are in
value and the asymptotic valé, given by the fit. More-  Vvery good agreement with the results of Novetial. [7]. In
over, in this small excitations rang¥,. can overcome the Particular, Fig. 4 is to be compared to the experimental data
R.C.P. limit, andr, the characteristic time of the fit, in- obtained with 1-mm-diameter beads, corresponding to an as-
creases spectacularly. In fact, the fit becomes more and moR&ct ratio of nearly 19, close to that used in our simulation
uncertain in so far as the tripleX(., B, 7) is no longer (L/2R=16). Surprisingly, for an aspect ratio of 9, the ex-
unique, and depends strongly on the range of taps over Whidp‘enmen.tal results show a much larger increase of the pack-
the data fitting is performed. This deviation between theind fraction on the reversible branch, up to nearly 66%.,
steady-state value and an uncertain asymptotic limit was als@ore than the R.C.P. limit, which may indicate a commen-
noted in the experimental work of the Chicago grg8pand  Surability between the cylinder and the beadp. However,
in some theoretical studi¢43,15. The dependence &fb°) for a st_lll _smaller aspect ratio of_ 6, the reverS|b_Ie branch is
on £12is shown in Fig. 4solid black squaresThe different ~More similar to the first case, wlth a moderate increase to a
packings are obtained after 4000 taps of strengthtarting ~ Maximal value below the 64% limit.
from the same initial packing. The curve has a bell shape
with a maximum between 0.1 and 0.2. C. Aging

If we now compute a unique tgpp;ng sequence with @ | these kinds of systems, in slow evolution to a final
progressive increase of the excitatief! after every 4000  gquilibrium, it is possible to demonstrate aging effects by
taps (the constant excitation increment 4s=**= +0.025),  comparing the system at different ages. This comparison can
we obtain nearly the same curve fgb°), as can be seen in e made by use of temporal correlation functions of global
Fig. 4 (open circles When carrying out the same proc?ss iNvalues p,(Z), ...) between the initial packing and the
the opposite way, i.e., with a progressive decrease’f same packing after an evolution ting (waiting time. In

FIG. 3. The power spectrum of the fluctuations(a@} vs fre-
qguency (the inverse of the number of tgpgup) and the simple
standard deviation ofZ), oz, which is nearly linear withs''
(down).

(Ae*?=—0.025), two things can happen. this study we work with the following function:
If, while increasing,e*? goes beyond a critical value of
(e¥?)*~0.15, the final packing fractiofd®¢) does not de- A(t,tw) =[(Z)(tw) —(Z)(t+ty) ]2 (5)

crease but increases a bit more to a maximum value. If we
compute another increase processs{?=+0.025), we Herex indicates the statistical averagexthat is, the mean
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FIG. 6. Two examples of vertical density profiles with their fit:
e T for the initial packing(dotted ling, and for a packing obtained after
LA 4000 taps withe=10"1 (solid line).

ics of the problem. Because it gives a very realistic descrip-

tion of a granular system such as a three-dimensional pack-
ing of hard spheres, it can be a quite useful and interesting
tool to go beyond a global description to a local analysis of

the packing’s structure during the compaction process.

t,=1,2,3,5,10, 20,
50, 100,500

0.2
IV. LOCAL ANALYSIS

To study the packings of more or less compacted spheres
N T T Y T T Y locally, we use two kinds of descriptions: packing fraction
B.In(1+t/7) (or density profiles are calculated vertically and transversely
(b) to the box, and size and volume distributions of the pores in
a packing are evaluated and then analyzed.

FIG. 5. Aging effects on the time-correlation functiét,t,y)
for several waiting times,, : the different curvegup), and a col- A. Density profiles
lapse according to the fit of the dotted lifgdown). )

Using the surface packing fraction calculated by stereo-
value calculated for a certain number of realizations of thdogical cuts(as in the evaluation ob,, and(®°)), we have
same experiment. The results have been averaged on ordgcess to verticalhorizontal cuts and transversévertical
ten realizations because of the limitation due to the calculaeuts density profiles. Some examples of vertical profiles are
tion time. The statistics are, therefore, rather poor; that ishown in Fig. 6. These have been obtained with F.B.C.’s, but
why we use solely{Z), which fluctuates quite less than the the use of P.B.C.’s induces no significant differences. The
other global values. In Fig. 5 we draw the curvesAdt,ty) profiles are characterized, in particular, by a negative vertical
obtained for different values dfy,. There is obviously a gradienta and by large peaks near the bottom of the box.
scaling law; a fit similar to that in Sec. Ill A, with the three These peaks reflect a partially ordered packing due to the
parameterdA,, (the asymptotic limit, B, and 7., is quite  wall, and are very close to previous experimental observa-

compatible with the data: tions [24]. The gradient can be roughly estimated in an in-
termediate zone (§z/R<22 for F.B.C.’s and 52z/R<26
1 for P.B.C.’9 after smoothing the profile. This gradient, di-
A(ttw) =Ax| 1= 1+BpIN(1+t/7))" ©) rectly linked to e, is qualitatively different from previous

numerical resultg§11], where a local densification was ob-

The same kind of aging effects were already pointed out ifained at the interface. It could be objected that this gradient
previous numerical studi¢40,11]. These effects confirm the comes directly from a modeling of the tap through a uniform
great similarity between granular compaction, or more gendlilation. Nevertheless, despite the fact tlais difficult to
erally slow granular rheology and glassy systems submitte@stimate very precisely, it does not seem to be monotonic
to time-dependent driving forceee, for instance, Refs. with €2, but has more or less the same kind of bell-shaped
[21-23). dependence as the other steady-state values. This behavior

To conclude with a global analysis of the compaction, it iscannot be caused only by the dilation. However, in contrast
satisfying to note that our simulation reproduces qualitativelyto the other average values, it seems thgiresents no hys-
well the previous results obtained both experimentally anderesis effect which denotes a relatively different behavior. In
theoretically. This model seems to capture most of the physsonclusion, the origin of the anisotropy of the packing, ob-
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FIG. 7. Two examples of transverse density profiles: for the .
initial packing (dotted ling, and for a packing obtained after 4000
taps withe=10"1 (solid line). The two vertical dotted lines indi- ] §/§
cate the frontiers in the calculus 6fD,cra and 6P opiral- 3

served through this gradient is not well understood. It may

come from both the uniform dilation of the system and
its specific redeposition under the simulated particle motiong” 1 v e=10"
under gravity. Inspired by a Fermi level prof{25], we can

central (%)

T M ednd
propose the following average fit for a typical vertical ok 5 o—e=10 )
profile: \I o e=2x 10

| —A—e=0,1

N (DO_aZ _ K 0 I .””"I| ' """'I2 ' .””"I:; o ””“I4 ' .””"I5
®(2) where z=z/R.  (7) 10 10 0 g 10 10

*
1+exd B(z—7Z")] 0)
Figure 7 presents a few transverse profiles in fixed bound- FIG. 8. Lateral(up) and central(down) packing fraction in-
aries; they are qualitatively close to experimental profilescreasegin comparison with the initial packing/st, the number of
[26]. Here again, some peaks indicate a local organization iteps for four values of.
layers due to the walls; this effect has approximately a three-
layer range. The average lateral density incre@sea dis-
tance less thanR from the walls, corresponding roughly to
this wall effects rangeis noted asd®,cra), @nd the central
increase a®®P ..nra- The last one is systematically smaller

than the other. Both of these are calculated in companso[116] with periodic conditions, and a slight agitation was then

with the initial profiles, and reflect the spatial repartition of , . . . .
the bulk compaction. These profiles, with periodic bound-'hduce{j in the packing to adapt it to fixed boundary condi-

aries, reveal no peak, due to the absence of walls. The centrnS- This last stage was not sufficiently efficient.
zone is a bit larger, but retains the same qualitative shape,
and densifies during a tapping sequence. This observation of
an obvious compaction even in P.B.C.’s ensures that com-
paction is not, or at least is not principally, due to wall ef-  Another way to analyze the packing of particles is to
fects. This was not evident when considering the small asstudy the interstitial voids. This void space is more difficult
pect ratio used in the experience of the Chicago groupto apprehend because, in contrast to a particle, a cavity has
Quantitatively, the absolute value of the packing fraction isno geometric limit. We then introduce the notion of pore as a
larger in periodic conditions, but its increase due to compac+ygjd” between four neighboring spheres. Previous studies
tion is a bit smaller. were already made on this issue, both theoretically and ex-
As global values 5P atera aNd 0P central have the same  perimentally. Gotolet al. [27] introduced the pore size dis-
dependence on'? (bell shaped curvesas the others. Itis tribution P, as the probability for a randomly positioned
a|SO pOSSib|e to Study theil’ eVOIUtion W|th the numbel’ Ofsphere Of radius’ to intercept no partic'e center. He pro_
taps. The results, preser_lted in Fig. 8, point out, once agairﬂ,osed a theoretical expression féY, derived from the
the nearly frozen dynamics for small valuesedf’. Percus-Yevick approximation which agrees well with previ-

Moreover, we can remark that the initial packing in gys results on random close packirig8,29,
F.B.C.'s presents a great metastability. This is particularly

noticeable on the transverse profigee Fig. 7, with an “un- 0<o<1, Pyo)=1-Dd3 (8)

derpopulation” of the spheres near the walls. This explains
the significant compaction &f® ..., caused by the first tap
(see Fig. 8 This metastability is due to the construction of
the initial packing: it was built by a gravitational algorithm

B. Size and volume distributions of the pores
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FIG. 9. Theorical pore size distributioR, (thick solid line
compared with the numerical calculation for a packing with the
same average volume fractiéopen circles There is no significant 8
difference from the calculations for the initial packifidpin solid
line), which has a volume fraction this is quite a bit smaller.

1<go, Po(a')=(l—@)ex;{(l_(j;q))z[—(l—ﬂb)aﬁ 4

In(p,(V))

+9/2h 0%+ 1-5/20] |, (9

t+1=0
t+1=100 A

o =
. . . . 4 t+1=10000 4 2. =
where o is the ratior’/R (R is the radius of the hard e
spheres and @ is the average volume fraction. Figure 9 2
confronts this expression with a distribution calculated in ' ' ' ' ' '
v

one of the packings obtained after a compaction sequence ¢
4000 taps ¢ =60.6%), and with periodic boundaries. The ®
distribution calculated i.n thg initial packingb(= 58.4%) is . FIG. 10. (8 Volume distribution of the poresp, (v) for a pack-
a!so represented, and is quite cI_ose_ to the _other_. ThIS shg% at different stages of its compactioff.B.C.'s and &=2
d|ffer_e_nce means that the distributid?y is |nsuff|C|entI_y x1072): t+1=1, 100, and 10 000. As the packing progressively
sensitive to small structural changes such as compaction. gensifiegi.e., ast increase the tail of the distribution correspond-
Hence we f|nd that |t |S more effICIent to WOI’k W|th a |ng to the |argest pores tends to Van(m Symbo"zed by the ar-
direct statistical analysis on the size of the pores. To do this,ow). Here T and O indicate thev values for tetrahedral and octa-
we use the Vororiotessellation of a packin@0]: a Vorond1  hedral sites in a dense packitfgc or H.C.’s. (b) Plot of In(p, (v))
polyhedon around a sphere is the region of space in which alls v for the same packings. The different tails are compatible with
the points are closer to this given sphere than to any othern Poisson law.
Two neighbors correspond to two Vordnpolyhedra that
share a face. Each vertex is equidistant from the center afse of the size distribution of the pores was previously
four neighboring spheres, and therefore constitutes a porsketched out by Barker and MeHt&7].
More precisely, we define the pore as a virtual sphere in If we now use directly the normalized volume= &3
contact with these four neighboring spheres, which interpen=4/37r3/4/37R® as a new variable, the corresponding sta-
etrates none of them. The size of the pore is then the radiusstical density isp,(v) = (£/3)p(£) (here the “volume” of
of this “void sphere.” The volume of this sphere partially a pore is reduced to 433). The distributionvp,(v) re-
reflects the total void volume situated inside the tetrahedrofiects the contribution of the pores to the total porosity ac-
formed by the centers of the four neighboring spheres. In @ording to their size; this last distribution seems to be more
packing, it is possible to calculate the size distribution of thepertinent in problems of free volume and compaction. We
poresp,(£), where§=r/R, with r the radius of a pore anld  have noted that, by integrating,(v), a new global value is
the radius of the hard spheres. The normalization givesbtained that corresponds to the average normalized volume
Ip(§)dé=Np, the total number of pores in the measure-of a spherical porey=(1/Np)[vp,(v)dv=(v)/V, where
ment volume. This distribution is linked to the previous one.(v) is the average volume of a poré,is the volume of the
ThusPy(o=r'/R) is more or less the sum of the pores of hard spheres, an is the number of pores. The average
size greater than’. ThereforePg is a cumulative distribu- pore volumer has the same dynamics and the same kind of
tion in comparison withp,, which is expected to be more reversible-irreversible behavior as described in Sec. Il B.
sensitive to the local structure. A rather similar analysis byFigure 1@a) shows the distribution® p,(v) for a given
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TABLE I. Characteristics of the Bernal canonical holes. pores, we can suggest that compaction is principally due to
rearrangements of the three largest canonical pores.

&=r/R  Number(%) Volume (%)

tetrahedron 0.225 73.0 48.4 V. CONCLUSIONS AND PERSPECTIVES
half-octahedron 0.414 20.3 26.9 A simple model of hard spheres under vertical taps, based
trigonal prism 0.528 3.2 7.8 solely on geometric constraints is sufficient to describe pre-
tetragonal dodecahedron  0.353 31 148 vious experimental and numerical results qualitatively: the
archimedian antiprism 0.645 0.4 2.1 same kind of compaction dynamics, the same hysteresis ef-

fect on the steady-state values, and the same aging behaviors.

packing at different stages of its compactiamF.B.C.’s and The originality of this model, i.e._, a realistic description of a
with an excitation strengtle=2x 10-2). The statistics are dranular system as a three-dimensional packing of hard

calculated in a smaller box of height Rdocated at a dis- SPNeres, permits a structural analysis of the packings. A
tance R from the walls to avoid some boundary problems.sem'k_)Cal stu<_jy of den_5|ty proﬂles suggests the e_><|stence ofa
In this measurement volum&l, varies approximately from negative vertical gradient in the packings bu? W't.h no clear
9550 to 10250 for the different packings analyzed. Thesdsteresis effect. It also confirms a compaction in the bulk

- P ; which cannot be caused only by wall effects, which are par-
different volume distributionsp, (v) are slightly affected jcularly noticeable with fixed boundari€¢g.B.C.’s). A more

by the taps in the small pore domain, whereas the variatio | vsi h id £ th K h .

of the packing fraction clearly appears in the progressiv OC‘Z Elm? ysLs on | € vol spacle 0 de' f‘f"; tl_ngs s oy\t/_s, "1 a
reduction of the tail of the distribution in the large pore zone MOUE! Of Spherical pores, a volume distribution Sensitive 1o
Thus, there is more or less a persistence of the distributiowe packing fraction for the Iarge. pores, that is nearly station-
for values ofv approximately limited by the volume of an ary for the small ones. Compaction could then be principally
octohedral site £o=2—1~0.414 andv,~0.0711). The explained by collective rearrangements of the largest pores.

R o~ e U0 T . To further this numerical work, an experimental study of

distributionvp,(v) is bell shaped, with an overpopulation the compaction induced by vertical taps is being carried out.

for the largest porg@he talb an:i \tNltE a(ljmllmmum s\'/Z;TZO_f tlhe The packing fraction is deduced from a measure of absorp-
pores corresponding to a tetrahedral sitgy< tion of a horizontaly-ray beam. In addition to the average

~0.225 andv1~0.0114). With respect to the small pores, \ .\ faction in the bulk, our setup permits an evaluation

this is in contradiction with a Poisson distribution proposedof the vertical density profile in the packing; these measure-
in a previ_ous.theoretical model for .Iogarithmic dyr“"‘mics‘ments would be crucial in order to test th’e results of our
[31]. But, n Fig. 1ab), we note thgt, Inarange Qf volume numerical model, especially concerning the existence of a
corresponding to the tail of the d'(sitﬂ?%tmpw(v) IS COM- " negative vertical gradient. Furthermore, compaction is stud-
pat|ble_W|th a Poisson law, (v) e . whereu, is di- ied in quite different experimental conditions than in the pre-
rectly linked to v, the average normalized volume already \i,5 work of the Chicago group. In this later condition the

defined, or to(d°), the average packing fraction. setup is a tube of height 80 cm, with an approximate diam-
These results must be compared with previous work Ouer of 2 cm filled with 1-mm-diameter soda lime glass
the issue. First, Berndll] analyzed the arrangements of heqqs Thys, transverse wall effects are very significant, and
spheres by characterizing the cavities between the spheregg \ertical pressure on the packing is saturated for almost
To do this, he studied the different polyhedra formed by thepe entire height of the heap, the overload being completely
sphere centers as corner. He found five canonical holegg|q yn by the walls. Conversely, the cylinder used in our
Table 1[32] presents his results obtained on a mechanlcaéetup has a diameter of 10 cm and a height of 15 cm; about
model of hard spheres and concerning the statistical weighino, of it is filled with 1-mm-diameter glass beads. Here the
(in number and in volumeand the¢ value corresponding t0 5| effects become negligible and the vertical pressure is
each hole. In fact, these canonical holes are more or leSgsfinitely not saturated in the packing. It will be interesting
distorted [otherwise p,(£) would be an addition of Dirac 45 see to what extent these differences can qualitatively and

peakd, and the value corresponding to the regular hole is g anitatively affect the compaction under vertical tapping.
therefore a lower limit. Thus we can note that the tetrahedron

and the tetragonal dodecahedron correspond to the smallest
values of¢, for which we have shown that the volume dis-
tribution vp,(v) is not greatly affected by the tapping pro-  We are very grateful to R. Jullien for his support in nu-
cess. In contrast, the octahedron, the trigonal prism, and th@erical questions, especially concerning his gravitational
archimedian antiprisnithe two last in very low proportions  deposition algorithm. We also wish to thank P. Richard, who
appear in the large pore range, and are consequently moeenstructed the program of size distribution of the pores, and
sensitive to the compaction state of the packing. Thus, acd. Jenkins, who kindly read this manuscript and ran a spell-
cording to Bernal's classification on the structure of theing check on it.
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